临床NLP任务,例如文本的心理健康评估,必须考虑社会限制 - 绩效最大化必须受保证用户数据隐私的最大重要性来限制。消费者保护法规(例如GDPR)通常通过限制数据可用性来处理隐私,例如要求将用户数据限制为给定目的的“必要内容”。在这项工作中,我们认为提供更严格的正式隐私保证,同时增加模型中用户数据量的同时,在大多数情况下,为所有涉及的各方(尤其是对用户)增加了收益。我们在Twitter和Reddit帖子的两个现有自杀风险评估数据集上演示了我们的论点。我们提出了第一个分析并置用户历史记录长度和差异隐私预算,并详细说明建模其他用户上下文如何实现公用事业保存,同时保持可接受的用户隐私保证。
translated by 谷歌翻译
关于人际冲突的研究历史悠久,并包含许多有关冲突类型学的建议。我们将其用作新的注释方案的基础,并发布新的情况和冲突方面注释的新数据集。然后,我们构建一个分类器,以预测某人在给定情况下是否将一个人的行为视为对还是错,从而优于先前的此任务的工作。我们的分析包括冲突方面,但也产生了被人类验证的集群,并根据参与者与作者的关系显示冲突内容的差异。我们的发现对理解冲突和社会规范具有重要意义。
translated by 谷歌翻译
Chain of thought prompting successfully improves the reasoning capabilities of large language models, achieving state of the art results on a range of datasets. However, these reasoning capabilities only appear to emerge in models with a size of over 100 billion parameters. In this paper, we explore the transfer of such reasoning capabilities to models with less than 100 billion parameters via knowledge distillation. Specifically, we finetune a student model on the chain of thought outputs generated by a larger teacher model. Our experiments show that the proposed method improves task performance across arithmetic, commonsense and symbolic reasoning datasets. For example, the accuracy of T5 XXL on GSM8K improves from 8.11% to 21.99% when finetuned on PaLM-540B generated chains of thought.
translated by 谷歌翻译
图神经网络(GNN)在各种与图形相关的任务上非常有效。但是,它们缺乏解释性和透明度。当前的解释性方法通常是局部的,将GNN视为黑盒。他们不在模型内部看,抑制了人类对模型和解释的信任。由神经元在视觉模型中检测高级语义概念的能力的动机,我们对单个GNN神经元的行为回答有关GNN可解释性的问题进行了新的分析,并提出了新的指标来评估GNN神经元的可解释性。我们提出了一种新颖的方法,用于使用神经元级概念为GNN产生全球解释,以使从业者能够对模型具有高级的看法。具体而言,(i)据我们所知,这是第一部作品,表明GNN神经元充当概念探测器,并且与表述为节点学位和邻居属性的逻辑组成的概念具有很强的一致性; (ii)我们定量评估检测概念的重要性,并确定训练持续时间和神经元水平的解释性之间的权衡; (iii)我们证明,我们的全球解释性方法比当前的最新方法具有优势 - 我们可以将解释解释为以逻辑描述为支持的单个可解释概念,从而降低了偏见的潜力并提高用户友好性。
translated by 谷歌翻译
数据集的质量在成功培训和部署深度学习模型中起着至关重要的作用。特别是在系统性能可能影响患者健康状况的医疗领域,干净的数据集是可靠预测的安全要求。因此,在构建自主临床决策系统时,离群值检测是一个必不可少的过程。在这项工作中,我们评估了自组织图对外离检测的适用性,专门针对包含白细胞定量相图像的医学数据集。我们根据量化误差和距离图检测和评估异常值。我们的发现证实了自组织地图对于手头数据集的无监督分布检测的适​​用性。根据专家领域知识,自组织地图与手动指定的过滤器相同。此外,它们在探索和清洁医疗数据集的工具方面显示了希望。作为未来研究的方向,我们建议将自组织地图和基于深度学习的特征提取的结合。
translated by 谷歌翻译
图形神经网络的不透明推理导致缺乏人类的信任。现有的图形网络解释器试图通过提供事后解释来解决此问题,但是,它们无法使模型本身更容易解释。为了填补这一空白,我们介绍了概念编码器模块,这是图形网络的第一个可区分概念 - 发现方法。所提出的方法使图形网络可以通过首先发现图形概念,然后使用这些来解决任务来解释。我们的结果表明,这种方法允许图形网络:(i)达到模型准确性与它们的等效香草版本相当,(ii)发现有意义的概念,以实现高概念完整性和纯度得分,(iii)提供基于高质量的概念逻辑。对其预测的解释,以及(iv)在测试时支持有效的干预措施:这些可以提高人类的信任并显着提高模型绩效。
translated by 谷歌翻译
拉格朗日轨迹或粒子分散模型以及半拉格朗日对流方案需要气象数据,例如在与常规网格独立移动的粒子的精确时空位置上的风,温度和地球电位。传统上,这种高分辨率数据是通过从气象模型或重新分析的网格数据中插值来获得的,例如在时空中使用线性插值。但是,插值误差是这些模型的巨大错误来源。减少它们需要具有较高空间和时间分辨率的气象输入字段,这可能并不总是可用,并且可能导致严重的数据存储和传输问题。在这里,我们将此问题解释为单个图像序列任务。我们将其本地分辨率可用的气象领域解释为低分辨率图像,并训练深层神经网络以将其提高到更高的分辨率,从而为Lagrangian模型提供了更准确的数据。我们训练各种最先进的版本增强的深层剩余网络,以实现低分辨率ERA5重新分析数据的超分辨率,以将这些数据提高到任意空间分辨率。我们表明,由此产生的向上缩放的风场具有均方根误差,该错误是在可接受的计算推理成本下以线性空间插值获得的风的一半。在使用Lagrangian粒子分散模型Flexpart和减少分辨率的风场的测试设置中,我们证明了计算出的轨迹与以0.5 {\ deg}计算的“地面真相”轨迹的绝对水平运输偏差至少减少了49.59.5。 48小时后,在2 {\ deg}对1 {\ deg}(4 {\ deg}到2 {\ deg})分辨率数据时,使用风数据的线性插值相对于轨迹的%(21.8%)。
translated by 谷歌翻译